Semester II Coordination Chemistry (Core IV) Subject Code: PG2021

No. of hours per week	Credit	Total no. of hours	Marks
6	6	90	100

Objectives:

- To understand the thermodynamic and stereochemical aspects of complexes
- To learn about the various mechanisms of substitution and electron transfer reactions.

Course Outcomes (COs)

CO No.	Upon completion of this course, the students will be able to:	PSO	Cognitive
		Addressed	Level
CO-1	understand the various theories and reaction mechanisms	PSO-1	U
	related to coordination compounds		
CO-2	apply the theories and reaction mechanisms to determine the	PSO-2	A
	properties of complexes		
CO-3	analyze the reaction mechanism of coordination compounds	PSO-2,3	Y
CO-4	evaluate the magnetic and spectral properties of complexes	PSO-2,3	Е
CO-5	create novel complexes and catalyst	PSO-4,5	С

Unit I Stability of Complexes

(18 Hours)

Stability of complexes - factors affecting stability of complexes - thermodynamic aspects of complex formation - stepwise and overall formation constants - stability correlations - statistical factors and chelate effect. Determination of stability constant and composition of the complexes - spectrophotometric method - ion exchange method - polarographic method and continuous variation method (Job's method).

Stereochemical aspects - stereoisomerism in inorganic complexes - isomerism arising out of ligand distribution and ligand conformation. Chirality - nomenclature of chiral complexes - application of ORD and CD in the identification of complexes.

Unit II Metal Ligand Bonding

(18 Hours)

Crystal field theory - Splitting of d orbitals under various geometries - factors affecting splitting - CFSE - evidences for CFSE (structural and thermodynamic effects) - spectrochemical series - Jorgensen relation - site preferences - Jahn-Teller distortion - dynamic and static Jahn-Teller - Jahn-Teller effect and chelation. Application of CFT - magnetic properties - spectral properties and kinetic properties - limitations of CFT- evidences for M-L overlap.

Molecular Orbital Theory - energy level diagrams concept of weak and strong fields - sigma and pi bonding - octahedral - square planar and tetrahedral complexes. Nephelauxetic effect. Magnetic properties of complexes. Comparison of CFT and MOT of bonding in octahedral complexes.

Unit III Electronic Spectra of Complexes

(18 Hours)

Spectroscopic term symbols for dⁿ ions - derivation of term symbols and ground state term symbol - Hund's rule - selection rules - breakdown of selection rules - spin orbit coupling - band intensities - weak and strong field limits - correlation diagram - energy level diagrams. Orgel diagram for weak field Oh and Td complexes - splitting of energy level due to Jahn-Teller distortion. Modified orgel diagram - limitations of orgel diagram. Tanabe-Sugano (T-S) diagrams - evaluation of Dq and B values for d²- d⁸ complexes charge transfer spectra. Complications in band classification between LF (d-d) and CT bands. Comparison between d-d bands and CT bands - numerical problems. Lanthanides and Actinides- spectral properties.

Unit IV Inorganic Reaction Mechanism

(18 Hours)

Electron transfer reactions - Inner sphere (ISET) and outer sphere (OSET) electron transfer processes. Reaction mechanism of coordination compounds - Types of ligand substitution reactions- mechanism- Dissociative mechanism (D) - Associative mechanism (A) interchange mechanism (I) - labile and inert complexes. Substitution reaction in octahedral complexes - general mechanism - general rate law for A - D and I - distinction between D - ID - IA pathways - replacement of coordinated water - mechanism of acid hydrolysis - base hydrolysis - DCB mechanism - direct and indirect evidences in favour of the mechanism. Ligand substitution reactions without cleavage of M-L Bond. Anation Reactions - substitution in square planar complexes - general mechanism - trans effect- influences of entering and leaving groups - application of trans effect - synthesis of isomers of Pt(II) complexes - theories of trans effect and cis-trans isomerisation reaction. Application of substitution reactions in the synthesis of platinum and cobalt complexes.

Unit V Catalysis (18 Hours)

General principles of catalysis - basic reactions involved in the catalysis by organometallic compounds. Hydrogenation of olefins (Wilkinson's catalyst) - Hydro formylation of olefins using cobalt or rhodium catalysts (OXO process) - oxidation of olefins to aldehydes and ketones (wacker process) - Monsanto acetic acid synthesis from methanol. Cyclo oligomerisation of acetylene using Ni catalyst (Reppe's catalyst) - synthetic gasoline by using ZSM-5 catalyst (Fisher-Tropsch and mobil process) - polymerization of olefins (Zeigler-Natta Catalyst) - polymer bound catalyst.

Text Books:

- 1. Lee, J.D. (2008). Concise Inorganic Chemistry. (5th ed.). India: Wiley India.
- 2. Huheey, J.E., Keiter, E.A., Keiter, R.L. & Medhi, O.K. (2011). Inorganic Chemistry: Principles of Structure and Reactivity. (4th ed.).India: Pearson Education.
- 3. Puri B.R., Sharma, L.R. & Kalia, K.C. (2012). Principles of Inorganic Chemistry. (4th ed.). India: Milestone publishers.
- 4. Malik, W.U., Tuli, G.D. & Madan, R.D. (2012). Selected topics Inorganic Chemistry. (5th ed.). New Delhi: S. Chand Company Ltd.

Reference Books:

- 1. Cotton, F.A. & Wilkinson, G. (1988). Advance Inorganic Chemistry. (2nd ed.). India: Wiley Eastern Private Ltd.
- 2. Miessler, G.L. (2004). Inorganic Chemistry. (3rd ed.), India: Pearson Education.
- 3. Purcell, K.F. &Kotz, J.C. (2012). Inorganic Chemistry. (2nd ed.). India: Cengage Learning India Pvt. Ltd.
- 4. Kettle, S.F.A, (1996).Coordination Chemistry-Ari Approach. USA: Spectrum Academic publishers Oxford.
- 5. Mehrotra, R. C. & Singh, A. (2014). Organometallic Chemistry. (2nd ed.) New Delhi: New Age International Ltd.
- 6. Parkins, A. W. &Poller, R. C. (1987). An Introduction to Organometallic Chemistry. Chennai: Oxford University Press.

Teaching Module

Credit: 6

*Total Hours: 90 (Incl. Seminar & Test)

Unit	Section	Topics	Lecture	Learning	Pedagogy	Assessment/
_	G. 1.314	60 1	Hours	Outcome		Evaluation
I	Stability 1	of Complexes Stability of complexes -	3	Understand the	Lecture	Evaluation
	1	factors affecting stability of complexes- thermodynamic aspects of complex formation	3	factors affecting the stability of complexes	and group discussion	through class test, online quiz and group discussion
	2	Stepwise and overall formation constants - stability correlations - statistical factors and chelate effect	3	Apply the theories to determine stepwise and overall formation constants	Lecture	Formative assessment I
	3	Determination of stability constant and composition of the complexes - spectrophotometric method - ion exchange method - polarographic method and continuous variation method (Job's method)	5	Apply various methods to determine the stability constants of complexes	Lecture and Seminar	
	4	Stereochemical aspects - stereoisomerism in inorganic complexes - isomerism arising out of ligand distribution and ligand conformation	4	Understand the stereoisomerism in inorganic complexes	Lecture and group discussion	
	5	Chirality - nomenclature of chiral complexes - application of ORD and CD in the identification of complexes	3	Apply ORD and CD in the identification of complexes	Lecture and Seminar	
II	Metal Li	gand Bonding				
	1	Crystal field theory - Splitting of d orbitals under various geometries - factors affecting splitting - CFSE - evidences for CFSE (structural and thermodynamic effects)	4	Understand crystal field theory and splitting of d- orbitals under various geometries	Lecture with ppt	Evaluation through class test, online quiz and group discussion

		Consideration of the contract	4	A = 01=1== - 1= 1	T	Fames - 4!
	2	Spectrochemical series -	4	Analyse dynamic	Lecture	Formative
		Jorgensen relation - site		and static Jahn-	and group	assessment I
		preferences - Jahn-Teller		Teller distortion	discussion	
		distortion - dynamic and				
		static Jahn-Teller- Jahn-				
		Teller effect and chelation	2	A 1 CETT	T .	
	3	Application of CFT -	3	Apply CFT to	Lecture	
		magnetic properties -		determine the		
		spectral properties and		magnetic,		
		kinetic properties -		spectral and		
		limitations of CFT-		kinetic properties		
		evidences for M-L overlap.		of coordination		
	4	Malanalan Onlited Theorem	4	compounds	T4	
	4	Molecular Orbital Theory -	4	Apply Molecular	Lecture	
		energy level diagrams		Orbital Theory to	with ppt	
		concept of weak and strong		octahedral, square		
		fields - sigma and pi bonding - octahedral -		planar and tetrahedral		
		square planar and tetrahedral complexes		complexes		
	5	Nephelauxetic effect.	3	Analyse CFT and	Lecture	
	3	Magnetic properties of	3	MOT of bonding	Lecture	
		complexes. Comparison of		in octahedral		
		CFT and MOT of bonding		complexes		
		in octahedral complexes		complexes		
III	Flectron	nic Spectra of Complexes		<u> </u>		
1111	1	Spectroscopic term	3	Understand	Lecture	Evaluation
	1	symbols for d ⁿ ions -	3	spectroscopic	Lecture	through class
		derivation of term symbols		term symbols		test and
		and ground state term		term symbols		group
		symbol				discussion
	2	Hund's rule - selection	4	Apply Hund's	Lecture	anse assion
	_	rules - breakdown of		rule and selection	and group	Formative
		selection rules - spin orbit		rules to spin orbit	discussion	assessment II
		coupling - band intensities		coupling	31554551011	
		- weak and strong field				
		limits - correlation diagram				
		- energy level diagrams				
	3	Orgel diagram for weak	4	Analyse splitting	Lecture	1
		field Oh and Td complexes		of energy level	with ppt	
		- splitting of energy level		due to Jahn	11	
		due to Jahn-		Teller distortion		
		Tellerdistortion. Modified		in weak O _h and		
		orgel diagram - limitations		T _d com-lexes		
		of orgel diagram		using Orgel		
				diagram		
	4	Tanabe-Sugano (T-S)	4		Lecture	1
				B values for d^2 -		
				d ⁸ complexes		
		complexes		•		
	4	Tanabe-Sugano (T-S) diagrams - evaluation of Dq and B values for d ² - d ⁸ complexes	4	Evaluate Dq and B values for d ² -	Lecture	

	1			T	1	1
	5	Charge transfer spectra.	3	Evaluate the	Lecture	
		Complications in band		spectral		
		classification between LF		properties of		
		(d-d) and CT bands.		lanthanides and		
		Comparison between d-d		actinides		
		bands and CT bands -				
		numerical problems.				
		Lanthanides and Actinides-				
		spectral properties				
IV	Inorgani	c Reaction Mechanism		.	·	
	1	Electron transfer reactions	4	Understand the	Lecture	Evaluation
		- Inner sphere (ISET) and		reaction	with ppt	through class
		outer sphere (OSET)		mechanisms of		test, online
		electron transfer processes		electron transfer		quiz and
		1		processes		group
	2	Reaction mechanism of	3	-	T a ataz ::-	discussion
	2		3	Analyse the types	Lecture	
		coordination compounds -		of substitution	and group	Formative
		Types of ligand		mechanisms in	discussion	assessment II
		substitution reactions-		coordination		
		mechanism- Dissociative		compounds		
		mechanism (D) -				
		Associative mechanism				
		(A) interchange				
		mechanism (I) - labile and				
		inert complexes				
	3	Substitution reaction in	5	Understand the	Lecture	
		octahedral complexes -		mechanism of		
		general mechanism -		substitution		
		general rate law for A - D		reaction in		
		and I - distinction between		octahedral		
		D – ID - IA pathways -		complexes		
		replacement of coordinated				
		water - mechanism of acid				
		hydrolysis - base				
		hydrolysis – DCB				
		mechanism - direct and				
		indirect evidences in				
		favour of the mechanism				
	4	Ligand substitution	3	Apply the	Lecture	
		reactions without cleavage		mechanism of	with ppt	
		of M-L Bond. Anation		substitution	rr.	
		Reactions - substitution in		reaction to square		
		square planar complexes -		planar complexes		
		general mechanism		rama completes		
		501101011 1110011011115111				

	5	Trans effect- influences of entering and leaving groups - application of trans effect - synthesis of isomers of Pt(II) complexes - theories of trans effect and cis-trans isomerisation reaction. Application of substitution reactions in the synthesis of platinum and cobalt complexes	3	Apply Trans effect and substitution reactions to synthesise Pt and Co complexes	Lecture	
V	Catalysis 1	-	4	Understand the general principles and basic reactions involved in the catalysis by organometallic compounds	Lecture	Evaluation through class test, group discussion and quiz Formative assessment II
	2	Hydrogenation of olefins (Wilkinson's catalyst) - Hydro formylation of olefins using cobalt or rhodium catalysts (OXO process)	3	Understand the mechanism of hydrogenation and hydroformylation of olefins using Co or Rh catalysts	Lecture with ppt	
	3	Oxidation of olefins to aldehydes and ketones (wacker process) - Monsanto acetic acid synthesis from methanol	4	Apply Wackers process to the oxidation of olefins	Lecture and group discussion	
	4	Cyclooligomerisation of acetylene using Ni catalyst (Reppe's catalyst) - synthetic gasoline by using ZSM-5 catalyst (Fisher-Tropsch and mobil process)	4	Apply Reppe's catalyst ans ZSM-5 catalyst to the cyclooligomerisat ion of acetylene and synthetic gasoline	Lecture	
	5	Polymerization of olefins (Zeigler-Natta Catalyst) - polymer bound catalyst	3	Create new polymer catalyst	Lecture	

Course Instructor: Dr. S. Lizy Roselet HOD: Dr. G. Leema Rose

Semester II Reaction Mechanism and Molecular Rearrangements (Core V) Subject Code: PG2022

No. of hours per week	Credit	Total no. of hours	Marks
6	5	90	100

Objectives:

- To understand the mechanism of organic reactions.
- To get an in-depth knowledge on the various types of oxidation and reduction reactions along with their synthetic utility.

Course Outcomes (COs)

CO No.	Upon completion of this course, the students will be able to:	PSO	Cognitive
		Addressed	Level
CO-1	understand the mechanisms of organic reactions	PSO-1	U
CO-2	apply the reaction mechanisms to synthesize organic compounds	PSO-2,3	A
CO-3	analyze the type of reactions in organic compounds	PSO-2,3	Y
CO-4	evaluate nucleophilic, electrophilic substitution and elimination reactions in aromatic and aliphatic compounds	PSO-2	Е
CO-5	create novel organic compounds	PSO-3,4	C

Unit I Addition to Carbon-Carbon Multiple Bond

(18 Hours)

Electrophilic addition to carbon-carbon double and triple bonds. Nucleophilic addition to carbon-carbon multiple bonds. Mechanism and stereochemical factors in reactions - addition of hydrogen halides, hypohalous acids and hydroboration. Hydroxylation of olefinic double bonds - OsO₄ - KMnO₄ - Woodward and Prevost hydroxylation. Epoxidation using peracids - Sharpless epoxidation and ozonolysis.

Mechanism and applications of Michael addition - Robinson annulation sequence - Diels' Alder - Knoevenagal - Mannich - Stork-enamine - Grignard - Darzen's and Reformatsky reactions.

Unit II Addition to Carbon-Oxygen Multiple Bond

(18 Hours)

Nucleophilic addition to carbon-oxygen double bond - Mannich, benzoin - Darzen's glycidic ester - Stobbe and Knovenagel condensation reactions. Wittig - Wittig-Horner

olefination reactions. Reactions of sulphur and sulphoniumylides. Julia olefination and Peterson alkene synthesis. Asymmetric reduction of carbonyl functions (Corey's procedure).

Unit III Elimination Reactions

(18 Hours)

Elimination reactions - E_1 - E_2 - E_{1cb} and E_i elimination. Effect of solvent - substrate and leaving group in elimination reactions. Hofmann - Saytzeff and Bredt's rule. Saytzeff's Vs Hoffman elimination. Stereochemistry of E_2 elimination. Mechanism of pyrolytic elimination - Chugaev and Cope elimination reactions. Hoffmann exhaustive methylation and pyrolysis of esters.

Unit IV Molecular Rearrangments and Name Reactions

(18 Hours)

Molecular rearrangements - classification - electrophilic - nucleophilic and free radical rearrangements. Mechanisms of Wagner Meerwin - Tiffenev-Demyanov - Dienone-Phenol - Favorskii - Fries - Baeyer-Villager - Stevens - Neber - Sommelet-Hauser - Baker-Venkatraman - von-Richter - Ullmann - Pummerer and di- π methane rearrangements.

Name reactions - Dieckmann cyclization - Hofmann-Loffler Freytag reaction - Mitsunobu reaction - Shapiro reaction - Eschenmoser-Tanabe and Ramburg-Backlund reactions.

Unit V Oxidation and Reduction Reactions

(18 Hours)

Oxidation with Cr - PCC - PDC and Jones. Oxidation with Mn - MnO₂ and BaMnO₄ reagents. Oxidation with LTA - DDQ and SeO₂. Oxidation using DMSO - DCC - acetic anhydride and oxaloyl chloride. Oxidation using IBX and Dess-Martin Periodinane (DMP) reagent.

Reduction with NaBH₄ - NaCNBH₃ - Zn(BH₄)₂ - LiAlH₄ - Li(BuO)₃AlH - DIBAL-H - Red-Al - Et₃SiH and Bu₃SnH. Reduction using selectrides - Birch reduction.

Text Books:

- 1. March, J. (2006). Advanced organic chemistry. (4th ed.).New York: John Wiley and Sons.
- 2. Ahluwalia, V.K. & Parshar, R.K. (2005). Organic Reaction Mechanism. (2^{nd} ed.). India: Narosa, publishing House.
- 3. Norman, R.O.C. & Coxon, J.M. (1993). Principles of Organic Synthesis, (3rded.). New York: CRC press, Taylor and Francis Group.
- 4. Morrison, R.T. & Boyd, R.N. (1997). Organic Chemistry. (6th ed.). New Jersey: Prentice Hall.
- 5. Jain, M.K. & Sharma, S.C. (2014). Modern Principles of Organic Chemistry. India: Vishal publication.

6. Chatwal, G.R. (2016). Reaction Mechanism and Reagents in Organic Chemistry. (5th ed.). India: Himalaya Publishing House.

Reference books:

- 1. Carey, F. & Sundberg, R.J. (2007). Advanced Organic Chemistry-Part A and B. (5thed.). USA: Springer.
- 2. Smith, M.B. & March, J. (2001). Advanced Organic Chemistry. (5thed.). New York: John Wiley and Sons.
- 3. Bansal, R.K. (2005). Reaction Mechanism in Organic Chemistry. (3rd ed.). Tata McGraw Hill.
- 4. Clayden, J. Greeves, N & Warren, S. (2012). Organic Chemistry. (2nd Ed.). Oxford University Press.
- 5. Tewari, K.S., Vishnol, N.K. & Mehrotra, S.N. (2002). A text book of organic chemistry. India: Vikas publishing House Ltd.
- 6. Kalsi, P.S. (1996). Organic Reactions and Mechanism. (1st ed.). India: New Age International Ltd.

Teaching Module

Credit: 5

*Total Hours: 90 (Incl. Seminar & Test)

	Gardian	T:	A			
Unit	Section	Topics	Lecture	Learning	Pedagogy	Assessment/
т	TI24 T A	1144 4- Ch Ch	Hours	Outcome		Evaluation
Ι	Unit I A	ddition to Carbon-Carbon	_	Understand	T4	E14:
	1	Electrophilic addition to carbon-carbon double	4		Lecture	Evaluation
				electrophilic		through
		and triple bonds.		addition and		online quiz
		Nucleophilic addition to		nucleophilic		Formative
		carbon-carbon multiple		addition to carbon-		assessment I
		bonds		carbon multiple		
				bonds	_	
	2	Mechanism and	4	Understand the	Lecture	
		stereochemical factors in		mechanisms	and Group	
		reactions - addition of		stereochemical	discussion	
		hydrogen halides,		factors in organic		
		hypohalous acids and		reactions		
		hydroboration				
	3	Hydroxylation of olefinic	3	Synthesize the	Lecture	
		double bonds - OsO ₄ -		organic compounds	and	
		KMnO ₄ - Woodward and		using	Seminar	
		Prevost hydroxylation		hydroxylating		
				agents		
	4	Epoxidation using	3	Understand the	Lecture	
		peracids - Sharpless		Epoxidation		
		epoxidation and		reactions		
		ozonolysis				
	5	Mechanism and	4	Apply the name	Lecture	
		applications of Michael		reactions to		
		addition - Robinson		synthesize organic		
		annulation sequence -		compounds		
		Diels' Alder -		1		
		Knoevenagal - Mannich -				
		Stork-enamine -				
		Grignard - Darzen's and				
		Reformatsky reactions				
II	Addition	to Carbon-Oxygen Multip	ole Bond			
	1	Nucleophilic addition to	5	Understand the	Lecture	Evaluation
	-	carbon-oxygen double		nucleophilic	with	through class
		bond - Mannich, benzoin		addition to carbon-	models	test, online
		- Darzen'sglycidic ester -		oxygen double	11100010	quiz and
		Stobbe and Knovenagel		bond		group
		condensation reactions		John		discussion
		condensation reactions		1		anscussion

	3	Wittig - Wittig-Horner olefination reactions Reactions of sulphur and sulphoniumylides. Julia olefination and Peterson alkene synthesis Asymmetric reduction of carbonyl functions (Corey's procedure)	5	Infer the mechanism of Wittig - Wittig-Horner olefination reactions Know the reactions of sulphur and sulphoniumylides Illustrate asymmetric reduction of carbonyl functions	Lecture Lecture and group discussion Lecture	Formative assessment I
III	Aromati	c Electrophilic and Nucleo	philic Subs	titutions		
	1	Elimination reactions - E ₁ - E ₂ - E _{1cb} and E _i elimination. Effect of solvent - substrate and leaving group in elimination reactions	5	Understand the concept of elimination reaction	Lecture	Evaluation through class test, online quiz and group discussion Formative
	2	Hofmann - Saytzeff and Bredt's rule. Saytzeff's Vs Hoffman elimination	4	Compare saytzeff's Vs Hoffman elimination	Lecture	assessment II
	3	Stereochemistry of E ₂ elimination. Mechanism of pyrolytic elimination - Chugaev and Cope elimination reactions	4	Infer the mechanism of pyrolytic elimination reaction.	Lecture and group discussion	
	4	Hoffmann exhaustive methylation and pyrolysis of esters	5	Understand the concept of Hoffmann exhaustive methylation	Lecture	
IV	Molecula	ar Rearrangements and Na	me Reaction		,	
	1	Molecular rearrangements - classification - electrophilic - nucleophilic and free radical rearrangements	4	Classify molecular rearrangements	Lecture	Evaluation through class test and group discussion
	2	Mechanisms of Wagner Meerwin - Tiffenev- Demyanov - Dienone- Phenol - Favorskii - Fries - Baeyer-Villager - Stevens and Neber rearrangements	5	Infer the mechanism of molecular rearrangements	Lecture and group discussion	Formative assessment II

	4	Sommelet-Hauser - Baker-Venkatraman - von-Richter - Ullmann - Pummerer and di- π methane rearrangements Name reactions - Dieckmann cyclization - Hofmann-Loffler Freytag reaction - Mitsunobu reaction - Shapiro reaction - Eschenmoser- Tanabe and Ramburg- Backlund reactions	4	Infer the mechanism of rearrangements Understand the mechanism of name reactions	Lecture	
V	Oxidatio	on and Reduction Reactions	<u> </u> S			
	1	Oxidation with Cr - PCC - PDC and Jones. Oxidation with Mn - MnO ₂ and BaMnO ₄ reagents	5	Understand and apply oxidising agents in organic synthesis	Lecture with videos	Evaluation through class test, group discussion and quiz
	2	Oxidation with LTA - DDQ and SeO ₂	4	Understand the application of LTA - DDQ and SeO ₂	Lecture	Formative assessment I
	3	Oxidation using DMSO - DCC - acetic anhydride and oxaloyl chloride	4	Understand the application of DMSO - DCC - acetic anhydride and oxaloyl chloride	Lecture	Evaluation through class test, group discussion and quiz
	4	Oxidation using IBX and Dess-Martin Periodinane (DMP) reagent	5	Apply oxidising agents in organic synthesis	Lecture and Group Discussion	Formative assessment II

Course Instructor: Dr. Y. Christabel Shaji HOD: Dr. G. Leema Rose

Semester II Quantum Chemistry and Spectroscopy (Core VI) Subject Code: PG2023

No. of hours per week	Credit	Total no. of hours	Marks
6	5	90	100

Objectives:

- To learn the principle of quantum mechanics of simple systems.
- To understand the principle, instrumentation, interpretation and applications of various spectroscopic and analytical techniques.

Course Outcomes (COs)

CO No.	Upon completion of this course, the students will be able to:	PSO Addressed	Cognitive Level
CO-1	understand the concepts of quantum chemistry, spectroscopy and surface chemistry	PSO-1	U
CO-2	apply the principles of quantum mechanics to simple systems, spectroscopy to characterize compounds and surface chemistry to determine the surface area of surface films and liquids	PSO-2	A
CO-3	analyse molecules using quantum mechanics and spectroscopic techniques	PSO-2,3	Y
CO-4	evaluate eigen values, bond angles, electron density and surface area of simple molecules	PSO-2,3	E

Unit I Quantum Chemistry-I

(18 Hours)

Black body radiation - Planck's quantum theory - wave particle duality - uncertainty principle. Operators - linear - commutation - Hermitian and Hamiltonian operators. Eigen functions and eigen values. Postulates of quantum mechanics. Derivation of Schrodinger's time-independent wave equation - application - one dimensional box - particle in a three dimensional box - harmonic oscillator and hydrogen atom.

Unit II Quantum Chemistry - II

(18 Hours)

Born-Oppenheimer approximation - Hydrogen molecule ion. LCAO-MO and VB treatments of the hydrogen molecule. Anti-symmetry and Pauli's exclusion principle. Slater detrimental wave function - term symbols and spectroscopic states - Russell Saunders coupling. The variation theorem and perturbation theory - applications of variation method and perturbation theory to the helium atom. Hybridization-determination of bond angles of sp

- sp² and sp³ hybridizations. Huckel pi electron (HMO) theory and its applications to ethylene - butadiene and benzene.

Unit III Molecular Spectroscopy - I

(18 Hours)

Electronic Spectroscopy - principle - laws of light absorption - Born-Oppenheimer approximation. Franck-Condon principle - wave-mechanical formulation - dissociation energy - dissociation products and predissociation. Microwave spectroscopy - rotation of molecules - rotational spectra of diatomic molecules - intensity of spectral lines - effects of isotopic substitution - non-rigid rotator. Rotational spectra of polyatomic molecules - chemical analysis by microwave spectroscopy.

Unit IV Molecular Spectroscopy - II

(18 Hours)

ESR - theory - hyperfine interactions in ESR - double resonance (ENDOR, ELDOR) - Mc Connell's relation - verification of the relation for cyclic polyene radical - calculation of electron density and experimental techniques.

Laser Raman Spectroscopy - Einstein treatment of absorption and emission phenomena-Einstein's coefficients - probability of induced emission - applications to lasers- conditions for laser action - properties - types of lasers - advantages of lasers in Raman spectroscopy and experimental techniques.

Unit V Surface chemistry

(18 Hours)

Electrical aspects of surface chemistry - electrical double layer - zeta potential. BET and Gibbs adsorption isotherms - derivation - applications - determination of surface area (BET equation) - surface films and liquids. Membrane equilibria and dialysis.

Surface active reagents - classification of surface agents - micellization - hydrophilic interactions - critical micellar concentration - factors affecting the CMC of surfaces. Transition state theory of surface reactions - rates of chemisorptions - Hertz-Knudson equation.

Text Books:

- Chandra. A.K. (2001). Introductory Quantum Chemistry. (4thed.). India: Tata McGraw-Hill.
- 2. Prasad, R.K. (2014). Quantum Chemistry. (4th ed.). New Delhi: New Age International Publishers.
- 3. Atkins, P. & Atkins, J.P. (2002). Physical Chemistry. (7thed.).USA: Oxford university press.
- 4. BanWell, C.N. & Mccash, E.M. (1997). Fundamentals of Molecular Spectroscopy. New Delhi: Tata Mc Grow Hill.

Reference Books:

- 1. Mcquarrie, D.A. (2008). Quantum Chemistry. Sausalito: University Science Books.
- 2. Puri, B.R., Sharma, L.R. & Pathania, M.S. (2016). Principles of Physical Chemistry (47thed.). India: Vishal Publications.
- 3. Aruldhas, G. (2011). Molecular Structure and Spectroscopy. (2nd ed.), India: PHI Learning Pvt. Ltd.

Teaching Module

Credit: 5 *Total Hours: 90 (Incl. Seminar & Test)

Unit	Section	Topics	Lecture	Learning	Pedagogy	Assessment/
_	0 4		Hours	Outcome		Evaluation
I		n Chemistry-I	1	Eveloie the	Lastrina	Evolvetion
	1	Black body radiation- Planck's quantum theory- wave particle duality- uncertainty principle	4	Explain the principle of black body radiation	Lecture	Evaluation through class test and quiz Formative
	2	Operators-linear - commutation - Hermitian and Hamiltonian operators	3	Gain knowledge about operators	Lecture	assessment I
	3	Eigen functions and eigen values. Postulates of quantum mechanics	3	Understand the postulates of quantum mechanics	Lecture and Seminar	
	4	Derivation of Schrodinger's time- independent wave equation	3	Derive Schrodinger's wave equation	Lecture	
	5	Application - one dimensional box - particle in a three dimensional box - harmonic oscillator and hydrogen atom	5	Apply Schrodinger's wave equation to hydrogen atom	Lecture	
II	Quantur	n Chemistry - II				
	1	Born-Oppenheimer approximation-Hydrogen molecule ion. LCAO- MO and VB treatments of the hydrogen molecule	4	Compare LCAO- MO and VB treatments of the hydrogen molecule	Lecture	Evaluation through class test, group discussion and online
	2	Anti-symmetry and Pauli's exclusion principle. Slater detrimental wave function	4	Apply Slater determinant to construct antisymmetric wave function	Lecture and group discussion	quiz Formative assessment I
	3	Term symbols and spectroscopic states-Russell Saunders coupling	4	Gain knowledge about term symbols	Lecture	

	5	The variation theorem and perturbation theory - applications of variation method and perturbation theory to the helium atom. Hybridization-determination of bond angles of sp - sp ² and sp ³ hybridizations.Huckel pi electron (HMO) theory and its applications to ethylene - butadiene and benzene	3	Apply variation method and perturbation theory to the helium atom Determine hybridization and bond angles	Lecture	
III	Molecula	ar Spectroscopy – I		T		
	1	Electronic Spectroscopy - principle - laws of light absorption - Born- Oppenheimer approximation	4	Understand the principle of electronic spectroscopy	Lecture	Evaluation through class test and group discussion
	2	Franck-Condon principle - wave-mechanical formulation - dissociation energy - dissociation products and predissociation	4	Apply Franck- Condon principle to dissociation.	Lecture and seminar	Formative assessment II
	3	Microwave spectroscopy - rotation of molecules - rotational spectra of diatomic molecules	3	Gain knowledge about microwave spectroscopy	Lecture and group discussion	
	4	Intensity of spectral lines - effects of isotopic substitution - non-rigid rotator	4	Know about the effects of isotopic substitution.	Lecture	
	5	Rotational spectra of polyatomic molecules - chemical analysis by microwave spectroscopy	3	Apply the principle of microwave spectroscopy in chemical analysis	Lecture and seminar	
IV		ar Spectroscopy – II		Γ		
	1	ESR - theory - hyperfine interactions in ESR - double resonance (ENDOR, ELDOR)	4	Know about hyperfine interactions in ESR	Lecture	Evaluation through class test, group discussion
	2	Mc Connell's relation - verification of the relation for cyclic polyene radical	3	Verify Mc Connell's relation for cyclic polyene radical	Lecture and group discussion	and online quiz Formative

	3	Calculation of electron density and experimental techniques in solution	3	Calculate electron density	Lecture	assessment II
	4	Laser Raman Spectroscopy - Einstein treatment of absorption and emission phenomena- Einstein's coefficients - probability of induced emission - applications to lasers	4	Derive Einstein coefficient	Lecture	
	5	Conditions for laser action - properties types of lasers - advantages of lasers in Raman spectroscopy and experimental techniques	4	Understand different types of lasers	Lecture	
V	Surface	chemistry				
	1	Electrical aspects of surface chemistry - electrical double layer - zeta potential.	4	Understand the concepts of surface chemistry	Lecture	Evaluation through class test, group discussion
	2	BET and Gibbs adsorption isotherms - derivation	3	Compare BET and Gibbs adsorption isotherms		and quiz Formative assessment II
	3	Applications - determination of surface area (BET equation) - surface films and liquids. Membrane equilibria and dialysis	4	Apply BET equation in determination of surface area	Lecture	
	4	Surface active reagents - classification of surface agents - micellization - hydrophilic interactions - critical micellar concentration - factors affecting the CMC of surfaces	4	Gain knowledge about CMC	Lecture with videos	
	5	Transition state theory of surface reactions - rates of chemisorptions - Hertz-Knudson equation	3	Derive Hertz- Knudson equation	Lecture	

Course Instructor: Dr. M. Shirley Treasa

Semester II Research Methodology (Elective II) Subject Code: PG2024

No. of hours per week	Credit	Total no. of hours	Marks
4	3	60	100

Objectives

- To understand the importance of research for future development.
- To get information about computation techniques in research

Course Outcomes (COs)

CO No.	Upon completion of this course, the students will be able to:	PSO Addressed	Cognitive Level
CO-1	understand the sources of literature survey and analytical techniques for documentation of research and cheminformatics for molecular representation	PSO-1	U
CO-2	apply the features of literature survey in research and analytical techniques to characterize compounds	PSO-2,3	A
CO-3	analyse the sources of research information and chemical compounds	PSO-2,3	Y
CO-4	evaluate the results using analytical techniques	PSO-2,3	Е
CO-5	create a journal article	PSO-3	С

Unit I Literature Survey

(12 Hours)

Source of chemical information - primary - secondary and tertiary sources. Literature survey - indexes and abstracts in science and technology. Applied science and technology index - chemical abstracts - chemical titles - current chemical reactions - current contents and science citation index. Classical and comprehensive reference works in chemistry-synthetic methods and techniques - treatises - reviews - patents and monographs.

Unit II Chemical Abstracts

(12 Hours)

Current awareness searching - CA weekly issues and CA issue indexes. Retrospective searching - CA volume indexes- general subject index - chemical substance index- formula index - index of ring systems - author index and patent index. CA collective indexes - collective index (CI) and decennial index (DI). Access points for searching CA indexes-index guide - general subject - terms - chemical substance names - molecular formulas - ring

systems - author names - patent numbers. Locating the reference - finding the abstract - finding the original document chemical abstract and service source index.

Unit III Research Problem and Scientific Writing

(12 Hours)

Identification of research problem - assessing the status of the problem - guidance from the supervisor - actual investigation and analysis of experimental results - conclusions. Scientific writing - research reports - thesis - journal articles and books. Steps to publishing a scientific article in a journal. Types of publications - communications - articles and reviews. Documenting - Abstracts indicative - descriptive abstracts - informative abstract - footnotes - end notes - referencing styles - bibliography - journal abbreviations - abbreviation used in scientific writing.

Unit IV Instrumental Analysis

(12 Hours)

Principle - instrumentation and applications - AFM - SEM - STM - TEM and XRD. Determination of surface morphology and particle size. Sample preparations and applications of UV - IR - NMR and mass spectroscopy.

Unit V Cheminformatics

(12 Hours)

Cheminformatics - history and applications. Representing molecules - connection tables and line notation - Inchi - SMILES and WLN canonicalization. Line notation versus connection tables. Query languages - SMARTS. Molecular similarity. 2D topology and 3D configuration. Chemistry softwares - Chemdraw - writing chemical equations and schemes - editing - transporting picture to word and image document. Origin -importing and exporting data - scientific graphing and data analysis - curve fitting and peak analysis - transporting graph to tag image file format.

Text Books:

- 1. Berg, B.L. (2009). Qualitative Research Methods for the Social Sciences. (7th ed.). India: Pearson Education.
- 2. Patton, M.Q. (2002). Qualitative research and evaluation methods. (3rd ed.). India: Sage Publications.
- 3. Alexis, L. & Mathews, L. (1999). Fundamentals of Information Technology. Chennai: Leon Vikas.
- 4. Mohan, J. (2001). Organic Spectroscopy Principles and Applications. India: Narosa publishing house.
- 5. Kemp, W. (1994). Organic Spectroscopy. (3rd ed.). New York: Macmillan.
- 6. Polanski, J. (2009). Cheminformatics. Poland: Elsevier Publications.

Reference Books:

- 1. Silverman, D. (2011). Qualitative Research: Issues of Theory, Method and Practice. (3^{rd} ed.). India: Sage Publications.
- 2. Marczyk, G. Dematteo, D. & Festinger, D. (2005). Essential of Research Design and Methodology. New York: John Wiley and Sons.
- 3. Silverstein, S.M., Bassler, G.V. & Morril, T.C. (2004). Spectrometric identification of organic compounds. (6th ed.). New York: Wiley.
- 4. Dyer, J.R. (1987). Applications of Absorption spectroscopy of Organic Compounds. New York: Prientice Hall.
- 5. Dani, V.R. (1995). Organic spectroscopy. India: Tata McGraw Hill.
- 6. Gasteiger, J. & Engel, T. (2003). Chemoinformatics. New York: John Wiley and Sons.

Teaching Module

Credit: 3

*Total Hours: 60 (Incl. Seminar & Test)

Unit	Section	Topics	Lecture Hours	Learning Outcome	Pedagogy	Assessment/ Evaluation
Ι	Literatu	re Survey	110011			
	1	Source of chemical information - primary - secondary and tertiary sources	2	Understand and identify the sources of information's	Lecture and group discussion	Evaluation through periodic test, class test and
	2	Literature survey - indexes and abstracts in science and technology	2	Apply the features of literature survey in research	Lecture and seminar	group discussion
	3	Applied science and technology index - chemical abstracts - chemical titles - current chemical reactions - current contents and science citation index	3	Understand the terms chemical abstracts and citation index	Lecture with group discussion and seminar	Formative assessment I
	4	Classical and comprehensive reference works in chemistry-synthetic methods and techniques	2	Understand classical and comprehensive reference works in chemistry	Lecture and seminar	
	5	Treatises - reviews - patents and monographs	3	Understand patents and monographs	Lecture with videos	
II	Chemica	al Abstracts	•	•		
	1	Current awareness searching - CA weekly issues and CA issue indexes. Retrospective searching - CA volume indexes and general subject index	2	Understand the importance of current awareness and retrospective searching in research	Lecture and seminar	Evaluation through periodic test, class test, online quiz and class
	2	Chemical substance index- formula index - index of ring systems - author index and patent index	2	Analyzevarious indexes in chemical abstracts	Lecture and seminar	assignment Formative
	3	CA collective indexes collective index (CI) and decennial index (DI)	2	Differentiate CI and DI	Lecture and seminar	assessment II

	4	Access points for searching CA indexes- index guide - general subject - terms - chemical substance names - molecular formulas - ring systems - author names and	3	Know how to search CA indexes	Lecture and seminar	
	5	patent numbers Locating the reference - finding the abstract - finding the original document chemical abstract and service source index	3	Pinpoint chemical abstract and service source index	Lecture and seminar	
III	Research	Problem and Scientific	Writing		1	
	1	Identification of research problem - assessing the status of the problem, guidance from the supervisor, actual investigation and analysis of experimental results and conclusions	3	Identify and solve research problems	Lecture with videos and group discussion	Evaluation through periodic test, class test and group discussionFor mative assessment II
	2	Scientific writing - research reports, thesis, journal articles and books	2	Know the art of scientific writing in research	Lecture with ppt and seminar	
	3	Steps to publishing a scientific article in a journal. Types of publications - communications, articles and reviews	3	Create journal articles, communication and reviews	Lecture and group discussion	
	4	Documenting - Abstracts indicative - descriptive abstracts and informative abstracts	2	Analyze descriptive and informative abstracts	Lecture and seminar	
	5	Documenting - footnotes, end notes, referencing styles,bibliography, journal abbreviations, abbreviation used in scientific writing	2	Identifythe format for documentation of research	Lecture with ppt	

IV	Instrum	ental Analysis				
	1	Principle, instrumentation and applications of AFM - SEM and STM	4	Understandthe principle and applications of AFM, SEM andSTM	Lecture with videos	Evaluation through periodic test, class test,
	2	Principle, instrumentation and applications of TEM and XRD	2	Understandthe principle and applications of TEM and XRD	Lecture with videos	online quiz and group discussion Formative assessment I
	3	Determination of surface morphology and particle size	2	Determine the surface morphology and particle size of compounds	Seminar and group discussion	Evaluation through periodic test, class test,
	4	Sample preparations and applications of UV and IR spectroscopy	2	Apply UV and IR spectroscopy for structural elucidation of compounds	Lecture with ppt and videos	online quiz and class assignment Formative
	5	Sample preparations and applications of NMR and mass spectroscopy	5	Apply NMR and mass spectroscopy for structural elucidation of compounds	Seminar	assessment II
V	Chemin	formatics				
	1	Cheminformatics - history and applications. Representing molecules - line notation - Inchi - SMILES and WLN canonicalization	2	Understand cheminformatics and line notations	Lecture with ppt	Evaluation through periodic test, class test and online quiz and problem
	2	Connection table and line notation versus connection table. SMARTS	2	Relate line notation and connection tables. Know about the query language SMARTS	Lecture with ppt	Formative assessment I
	3	Molecular similarity - 2D topology and 3D configuration	2	Understand the importance of molecular similarity, 2D topology and 3D configuration in cheminformatics	Lecture	

4	Chemistry softwares - Chemdraw - writing chemical equations and schemes - editing - transporting picture to word and image document	3	Apply Chemdraw software to draw chemical equations and schemes	Lecture with demo using Chemdraw software	
5	Origin -importing and exporting data - scientific graphing and data analysis - curve fitting and peak analysis - transporting graph to tag image file format	3	Apply Origin software to sketch graph and data analysis	Lecture with demo using Origin software	

Course Instructor: Dr. Sheeba Daniel HOD: Dr. G. Leema Rose

Semester: IV Core IX

Name of the Course: Organic Chemistry IV Subject Code: PG1741

Teaching Plan

Unit	Mod	ule	Topics	Lectur Hours	e	Learning Outcome	Pedagogy	Assessment/ Evaluation
I	Retr	osyn	thetic Analysis	Hours		Outcome		Lvaluation
	convergent approach, protecting groups and activating groups. Target molecule containing one functional group requiring a single disconnection.		4		Understand the concept of reterosynthesis	Lecture	Evaluation through class test Formative assessment I	
	2 Synthons and synthetic equivalents. Latent polarity. Target molecules with two functional groups - 1,3-, 1,5- and 1,4-dicarbonyl compounds.		5		Analyse the reterosynthetic approach of target molecules with two functional groups	Lecture		
	Functional group interconversions. Umploung synthesis.		3		Generalize functional group interconversions and Umploungsynthesis	Lecture		
	4	bisa	rosynthetic analysis of abolene, cis-Jasmone and gifolene.	3		Explain the retrosynthesis of bisabolene, cis-Jasmone and longifolene	Lecture	
II	Alka	loids						•
	1	gen	taloids, Extraction, eral properties and ssification.	4		scuss the chemistry alkaloids	Lecture	Evaluation through class test and
	2		caloids -general methods determining structure.	3	3 Know about the general methods for determining the structure of alkaloic		Lecture	group discussion Formative
	3	mo	uctural elucidation of rphine, atropine and aine.	5	of	ucidate the structure morphine, atropine d cocaine	Lecture and group discussion	assessment II
	4	qui	uctural elucidation of nine and papaverine.	3	of	ucidate the structure quinine and paverine	Lecture and group discussion	
III	Mole	ecula	r rearrangements					

	2	Classification - electrophilic, nucleophilicand free radical rearrangements. Mechanisms of Di- π- methane rearrangement. Mechanisms of Tiffenev-Demyanov, Dienone- Phenol and von-Richter rearrangements.	3	Classify the types of rearrangements and understand the mechanism of Di- π-methane rearrangement Explain the mechanism of Tiffenev-Demyanov, Dienone- Phenol and von-Richter rearrangements	Lecture	Evaluation through class test Formative assessment III
	3	Mechanisms of Favorskii, Fries, Baeyer-Villager rearrangements.	4	Explain the mechanism of Favorskii, Fries and Baeyer-Villager rearrangements	Lecture	
	4	Mechanisms of Stevens, Neber and Sommelet-Hauser rearrangements.	3	Explain the mechanism of Stevens, Neber and Sommelet-Hauser rearrangements	Lecture	
	5	Mechanisms of Baker- Venkatraman, Wagner Meerwin and Ullmann rearrangements.	3	Explain the mechanism of Baker-Venkatraman, Wagner Meerwinand Ullmann rearrangements	Lecture	
IV	Orga	nic Photochemistry	•	-		
	1	General introduction. Thermal versus photochemical reactions. Jablonski diagram.	3	Differentiate thermal and photochemical reactions	Lecture	Evaluation through class test and group
	2	Photochemical reactions of ketones—photosensitization, Norrish type - I and Norrish type - II reactions and mechanisms.	3	Know the photochemical reactions of ketones	Lecture and group discussion	discussion Formative assessment II
	3	Paterno–Buchi reaction, photooxidation and photoreduction of ketones,.	3	Identify photooxidation and photoreduction of ketones	Lecture	
	4	Photochemistry of arenes. Photodimerisation and photoisomerisation.	3	Understand the mechanism of photochemical reactions in ketonesandarenes	Lecture	
	5	Reactions involving free radicals – Barton, Hunsdiecker, Pschorr and Gomberg-Bauchman reactions.	3	Know the mechanism of photochemical reactions in free radicals	Lecture	
V	Peric	yclic Reactions		<u> </u>		
V	Peric	cyclic Reactions				

1	Characteristics and classifications of pericyclic reactions - electrocyclic, cycloaddition and sigmatropic reactions.	4	Identify the reactions involving in pericyclic reaction	Lecture	Evaluation through class test, group discussion and quiz
2	Woodward Hofmann rule. 2+2, 2+4 – reactions, Retro- Diels Alder reaction and Diels Alder reaction.	4	Understand the mechanism of photochemical reactions	Lecture	Formative assessment I
3	Cope rearrangements and Claisen rearrangements. Conservation of orbital symmetry. Prediction of reaction conditions using FMO.	4	Know about FMO diagram	Lecture and group discussion	
4	Correlation diagrams and Zimmerman (Mobius-Huckel analysis) approaches.	3	Correlate pericyclic reactions	Lecture	

Course Instructor: Y. Christabel Shaji

HOD: G. Leema Rose

Semester: IV Core X

Name of the Course: Inorganic Chemistry III

Sub Code: PG1742

Teaching Plan

Unit	Modu	ıle	Topics		cture	Learning	Pedagogy	Assessment/
				Hou		Outcome		Evaluation
I	Appli	catio	on of spectroscopy to the s	tudy	of Ino	rganic compounds –	III	
	1	ap _j	MR Spectroscopy: nciple, ³¹ P, ¹⁹ F, ¹⁵ N, plications in structural oblems. Monitoring the arse of reaction.	and ap NMR structu		now the principle and applications of MR spectroscopy in ructural etermination	Lecture	Evaluation through class test Formative
	2	NN mo par cor	MR of fluxional plecules. NMR of ramagnetic molecules - ntact shift and shift gents.	3	A sp	nalyse the NMR pectrum of various olecules	Lecture	assessment I
	3	NC Pri NN gra spl syl fie in		5	Compare and understand NQR and NMR spectroscopy		Lecture	
	4	Ap box sub str	plication - hydrogen nding, phase transition, ostituent effect and uctural information.	3	of	now the applications NQR spectroscopy	Lecture and Seminar	
II			ons of spectroscopy to the					_
	1	Pre hyj aff	R spectroscopy roduction and Principle esentation of the spectrum are perfine splitting. Facto ecting the magnitude of gues	nd	3	Understand the concept of ESR spectroscopy	Lecture	Evaluation through class test and group discussion
	2	Kr An	ro-field splitting and amer's degeneracy. isotropy in the hyperfine upling constant	3	3	Know about zero- field splitting, Kramer's degeneracy and anisotropy	Lecture	assessment II

	3	Covalency of M-L bonding by ESR.Jahn- Teller distortion in Cu (II) complexes from ESR studies.	3	Determine the ESR spectrum of Cu complexes	Lecture and group discussion	
	4	Mossbauer Spectroscopy: Principle, Doppler Effect, recoil energy, minimizing recoil energy, Doppler broadening.	3	Understand the principle and concept of Mossbauer spectroscopy	Lecture and group discussion	
	5	Isomer shift in Fe and Sn compounds. Electro negativity and chemical shift. Quadrupole interaction - quadrupole splitting in the MB spectra of Fe complexes.	3	Differentiate the MB spectrum of Fe ²⁺ and Fe ³⁺ complexes	Lecture	
III	Non-	aqueous solvents				
	1	Non- aqueous solvents- Introduction General properties and classification of solvents	2	Classify solvents	Lecture	Evaluation through class test and group
	2	Self-ionization and leveling effect. Reactions in non- aqueous solvents. Solute- solvent interaction.	2	Understand the reactions in non-aqueous solvents and solute-solvent interaction	Lecture and seminar	Formative assessment III
	3	Solution of metals in liquid ammonia. Reaction in liquid HF, liquid halogens, interhalogens and liquid H ₂ SO ₄ .	3	Identify the reactions in non-aqueous solvents	Lecture and group discussion	
	4	Molten salts as non-aqueous solvents. Titration in non-aqueous solvents.	3	Know about molten salts and titrations in non-aqueous solvents	Lecture and seminar	
	5	HSAB theory and solvent system definitions.	2	Define HSAB theory and solvent systems	Lecture	
	6	Acid base concepts - Arrhenius, Lux flood, Usanovich, Lowry- Bronsted and Lewis concept.	3	Infer acids and bases using various concepts	Lecture	
IV		rical and magnetic properties of s			T	
	1	Conductivity of pure metals and Electrical conductivity	2	Explain the conductivity of metals	Lecture	Evaluation through class test and

	3	Photoconductivity, photoconductive device. Solar cell and solar energy conversion. Dielectric properties - permittivity, dielectric constant, electric susceptibility, electronic polarization, ionic polarization, orientation, dielectric loss and dielectric break down, ferro	4		Describe solar cells and solar energy conversion Define the electrical proprieties of metals	Lecture and group discussion	group discussion Formative assessment II
	4	electricity. Applications of magnetic properties of solids - dia, para, ferro, antiferro and ferrimagnetism.	3		Describe the magnetic properties of metals	Lecture	
	5	Effect of temperature on magnetism - Curie and Weiss law. Calculation of magnetic moments.	3		State Curie and Weiss law and determine the magnetic moment of metals	Lecture	
V	Bio I	Inorganic Chemistry - II					
	1	Photosynthesis, photosystem I and II and photosynthetic reaction centre.	3	I, II	neralize photosystem and photosynthetic ction	Lecture	Evaluation through class test, group discussion
	2	Metalloenzymes - enzymes in di-oxygen management.	2	Des	scribemetalloenzymes	Lecture	and quiz Formative
	3	Super oxide dismutase, superoxide toxicity, structure of Cu, Zn-SOD, enzymatic activity and mechanism.	3	dismutase		Lecture and group discussio n	assessment I
	4	Peroxidases, catalases, oxidases and mono oxygeneases.	2			Lecture	
	5	Zinc enzymes - the structural role of zinc and zinc constellations of carbonic anhydrase, carboxy peptidase and alcohol dehydrogenase.	3	Uno	derstand the role of c inzinc enzymes	Lecture	
	6	Metal complexes as probes of nucleic acids. Gold compounds and anti-arthritic agents.	2	con	press the role of metal applexes and its dications	Lecture and group discussio n	

Course Instructor: A.K. Shermila HC

Semester: IV Core XI

Name of the Course: Physical Chemistry IV

Sub Code: PG1743

Teaching Plan

Unit	Mod	lule	Topics	Lectu		Learning Outcome	Pedagogy	Assessment/ Evaluation
I	Adva	anceo	topics in electrochemistry	y			•	1
	1	Intr the	oto-electrochemistry - roduction, band bending at semiconductor/solution erface.	3		derstand photo- ctro chemistry	Lecture	Evaluation through class test
	2	by sur	face effects in photo- ctrochemistry.	2	2 Explain photo- excitation of ele		Lecture and Seminar	Formative assessment I
	3	pho spli	oto-electro catalysis, oto-electrochemical atting of water, photo- etrochemical reduction of	3	Generalize photo- electrochemical reactions		Lecture and Seminar	
	4	elec pot con	relectrochemistry – bio- ctrodes, membrane entials. Electrochemical nmunication in biological anisms	3		ow about bio- ctrochemistry	Lecture with PPT	
	5	elec	zymes as electrodes, etron transfer in p450 ymes	2		derstand the role of cymes as electrodes	Lecture	
	6	elec	ctrochemical sensors, etrochemical biosensors, sensors and sensor ays.	3		scribe various sors	Lecture with ppt	
II	Nano	mat	erials for catalysis					
	1	hor	nocatalyst: fundamentals, nogeneous vs erogeneous catalysis	3	hom	erentiate logeneous and rogeneous nano- lysis	Lecture and seminar	Evaluation through class test and group
	2	mo	ect of surface area, shape, rphology, particle size and nposition on catalysis.	surfa morp		w the effect of ace area, shape, phology, particle and composition on lysis	Lecture with ppt	Formative assessment II
	3	cata wat	no-materials for photo- alysis - dye degradation, er splitting, organic asformations.	4		ly nano-materials bhoto-catalysis	Lecture and group discussion	

	4	Plasmon assisted photocatalysis and band gap tuning	3	Understand the concept of plasmon assisted photo-catalysis and band gap tuning	Lecture and group discussion	
	5	Nanomaterials for CO ₂ capture and conversion.	2	Explain nanomaterials for CO ₂ capture and conversion	Lecture	
III	Mole	ecular Spectroscopy - II				
	1	Electronic Spectroscopy: Principle, laws of light absorption, Born- Oppenheimer approximation	3	Know the principle of electronic spectroscopy and Born-Oppenheimer approximation	Lecture	Evaluation through class test and group discussion
	2	Franck-Condon principle, Wave-mechanical formulation, dissociation energy and dissociation products.	3	Understand Franck- Condon principle, dissociation energy and dissociation products	Lecture and seminar	Formative assessment III
	3	Pre-dissociation, fluorescence and phosphorescence - principle and theory.	2	Generalize the principle and theory of fluorescence and phosphorescence	Lecture and group discussion	
	4	Nuclear magnetic resonance spectroscopy: Principle, Nuclear spin and nuclear moment, chemical shift and its measurements.	2	Explain the principle and concept of NMR spectroscopy	Lecture and seminar	
	5	Factors influencing chemical shift, shielding and deshielding effects, spin-spin interactions,	2	Discuss the factors affecting chemical shift and sipn-spin interactions	Lecture	
	6	NMR of simple AMX type molecules, coupling constant, FTNMR, NMR of ¹⁹ F, ³¹ P and ¹³ C.	5	Interpret the concept of FTNMR, ¹⁹ F, ³¹ P and ¹³ C NMR spectroscopy	Lecture	
IV	Mole	ecular Spectroscopy - III				,
	1	ESR: Theory, hyperfine interactions in ESR. Double resonance (ENDOR, ELDOR), Mc Connell's relation.	4	Understand the theory of ESR spectroscopy, double resonance and Mc Connell's relation	Lecture	Evaluation through class test and group discussion
	2	Verification of the relation for cyclic polyene radical and calculation of electron density. Experimental techniques.	3	Explain the ESR spectroscopy of cyclic polyene radical and calculation of electron density	Lecture and group discussion	Formative assessment II

	3	Laser Raman spectroscopy: Einstein treatment of absorption and emission phenomena. Einstein's coefficients.	2	Know about Laser Raman spectroscopy	Lecture	
	4	Probability of induced emission and its applications to lasers. Conditions for laser action.	4	Describe the applications of laser Raman spectroscopy	Lecture	
	5	Properties and types of lasers. Advantages of lasers in Raman spectroscopy. Experimental Techniques.	2	Discuss the properties and advantages of lasers in Raman spectroscopy	Lecture	
V	Solic	d State Chemistry				
	1	Ionic radii - determination. Gold Schmit'srule.	2	Determine the ionic radii of solids	Lecture	Evaluation through class test, group
	2	Closed packing in solids. Structure of metallic crystals.	3	Explain the structure of metallic crystals		discussion and quiz
	3	Perovskite, CsCl, Zinc blende, Wurtzite, Rutile, fluorite and antifluorite. Covalent crystals. Diamond and graphite.	5	Discuss the structure of covalent crystals, diamond and graphite	Lecture	- Formative assessment I
	4	Mechanical properties of solids.	2	Understand the mechanical properties of solids	Lecture with videos	

Course Instructor: S. LizyRoselet HOD: G. Leema Rose

Semester: IV Elective IV

Name of the Course: Energy for the Future

Subject Code: PG1744

Teaching Plan

Unit	Modul	le	1	Lecture Hours	Learning Outcome	Pedagogy	Assessment/ Evaluation
I	Introd	ucti	on to Energy Sources	110015	Outcome		Evaluation
	1	Intr ene gas was	roduction, conventional ergy sources like coal, oil, agricultural and organic stes, water power, thermal ever and nuclear power.	4	Know the sources of conventional energy	Lecture with videos	Evaluation through class test and seminar
	2	sou wir	n-conventional energy arces like solar energy and and energy.	3	Explain non- conventional energy sources	Lecture and Seminar	Formative assessment I
	3	gas	ergy from bio-mass and bio- , ocean thermal energy, tidal ergy.		Understand various sources of energy	Lecture and Seminar	
	4	hyc	othermal energy and lrogen energy. Advantages renewable energy.	4	Generalize the advantages of renewable energy	Lecture and seminar	
II	Solar l	Enei	rgy	•		1	1
	1	sola the rad	ar radiation and its asurement - Introduction, ar constant, solar radiation at earth's surface, solar iation geometry and solar iation data.	4	Explain solar radiations and its measurement	Lecture and seminar	Evaluation through class test and seminar Formative
	2	Intr of t rad	ar energy collectors - coduction, physical principles the conversion of solar iation into heat, flat plate and ecentration collectors.		Understand the principle of solar energy conversion and collectors	Seminar	assessment II
	3	of c	vantages and disadvantages concentration collectors over collectors.	3	Know the advantages and disadvantages of different collectors	Lecture	
	4	col	ergy balance equation and lector efficiency.	4	Determine energy balance and collector efficiency	Lecture and seminar	
III	Wind	Ene	rgy				

	1	Introduction, basic principles of wind energy conversion, power of the wing, forces on the blades.	2	Understand the basis of wind energy	Lecture with videos	Evaluation through class test and seminar			
	2	Wind energy conversion, wind data and estimation, site selection.	3	Illustrate wind energy conversion	Lecture with ppt and videos	Formative assessment III			
	3	Types of wind machines - Horizontal axis and vertical axis machines.	3	Classify the types of wind machine	Lecture and seminar				
	4	Analysis of aerodynamic forces acting on the blade, performance of wind machines.	3	Analyse the forces acting on the blade	Lecture and seminar				
	5	Generating systems - Introduction, schemes of electric generation, generator control, load control, energy storage. Application of wind energy.	4	Explain generating system and applications of wind energy	Lecture with videos				
IV	Bio-energy								
	1	Introduction, biomass conversion techniques - wet processes and dry processes.	3	Explain biomass and its conversion	Lecture and seminar	Evaluation through class test and quiz			
	2	Biogas generation. Classification of biogas plants - floating drum plant and fixed dome type plant. Biogas from plant waste.	4	List out the classification of biogas plants	Lecture and seminar	assessment I			
	3	Materials used for biogas generation, selection of site for a biogas plant, digester design. Problems related with biogas plants.	4	Generalize biogas generation and identify the problems related to biogas plant	Seminar				
	4	Fuel properties of biogas and utilization of biogas.	4	Understand the properties of biogas	Lecture and seminar				
V	_	ical energy sources							
	1	Fuel cells - Introduction, conversion efficiency of fuel cells, types of electrodes, work output.	2	Understand the basis of fuel cells	Lecture and seminar	Evaluation through class test and quiz			
	2	EMF of fuel cells. Applications of fuel cells.	3	Determine the EMF of fuel cells and explain the applications of it	Lecture and seminar	Formative assessment II			

3	Hydrogen energy: Hydrogen production – electrolysis, thermochemical, fossil fuel and solar energy methods.	4	Explain hydrogen production by various methods	Seminar	
4	Hydrogen storage and hydrogen transportation.	2	Know about hydrogen storage and hydrogen transportation	Lecture and seminar	
5	Utilization of hygrogen gas. Hydrogen as an alternative fuel for motor vehicles. Safety and management.	4	Describe the utilization and safety measures of hydrogen gas	Seminar	

Course Instructor: S. Santhiya HOD: G. Leema Rose